A New Antiferromagnetic Molecular Conductor With Modified λ-type Structure, λ'-(BETS)$_2$FeBr$_4$

Biao Zhou1, Hisashi Tanaka,2 Akiko Kobayashi1, and Hayao Kobayashi1

1 Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40 Setagaya-Ku, Tokyo 156-8550, Japan
2 Nanotechnology Research Institute, AIST, Umezono, Tsukuba 305-8568, Japan

Email: zhou@chs.nihon-u.ac.jp

It has been reported that the molecular conductors based on BETS (bis(ethylenedithio)-tetrasedlenafulvalene) and magnetic anions FeX$_4^-$ (X = Cl, Br) gave novel systems showing attractive electromagnetic properties such as magnetic field induced superconductivity [1,2]. Here, we report the crystal structure, electrical resistivity, magnetic susceptibility of new BETS conductor, λ'-(BETS)$_2$FeBr$_4$.

λ'-(BETS)$_2$FeBr$_4$ is isostructural to λ'-(BETS)$_2$GaBr$_4$ [3] and has a modified λ-type structure. The planar BETS molecules are stacked along the b axis, and form two-dimensional conduction layers parallel to (010). The FeBr$_4^-$ anions are located in the spaces between the BETS layers. Although the intermolecular overlap integrals between HOMOs along the b direction are much larger than those along the a and c directions, the tight-binding band calculation gave two-dimensional Fermi surfaces.

Resistivities of λ'-(BETS)$_2$FeBr$_4$ were measured by conventional four probe method. The room-temperature conductivity was fairly high ($\sigma_{r.t.} = 30$ S·cm$^{-1}$), but the resistivities were almost temperature independent at 300-50 K. Then the resistivities increased rapidly below 50 K, indicating a metal-insulator (MI) transition. The resistivity at 4 K was about 300 times larger than the room-temperature value.

The magnetic susceptibilities of λ'-(BETS)$_2$FeBr$_4$ were measured by SQUID magnetometer. A Curie-Weiss behavior was observed in the high temperature region ($\chi_0 = 1.40 \times 10^{-2}$ emu mol$^{-1}$, $C = 4.24$ emu K mol$^{-1}$, $\theta = -2.8$ K) indicating the existence of a localized $S = 5/2$ Fe$^{3+}$ spin on each structure unit. However, a sudden decrease in susceptibilities was observed below ca. 3 K, suggesting an antiferromagnetic (AF) transition. In contrast to λ-(BETS)$_2$FeCl$_4$ [4], where π electron system undergoes a coupled AF and MI transition, the Fe$^{3+}$ spins in λ'-(BETS)$_2$FeBr$_4$ are 3-D ordered below 3 K.