Magnetocapacitive coupling in spin density wave systems

Damir Starešinić¹, Damir Dominko¹, Peter Lunkenheimer², Georgy Remenyi³ and Hiroshi M. Yamamoto⁴

¹Institute of Physics, Zagreb, Croatia
²Institute of Physics, University of Augsburg, Augsburg, Germany
³Institute Neel, CNRS, Grenoble, France
⁴Condensed Molecular Materials Laboratory, RIKEN, Saitama, Japan.

Email: damirs @ifs.hr

The quasi one-dimensional systems of (TMTSF)₂X family exhibit a wealth of fascinating phenomena covering several important topics of solid state physics. They typically undergo a transition into the spin density wave (SDW) state which can be regarded as the incommensurate antiferromagnetic state [1]. On the other hand, at temperatures sufficiently below the SDW transition temperature they exhibit a ferroelectric-like increase of the dielectric constant accompanied by the slowing down of the low frequency relaxation process which undergoes eventually a transition into a glassy state [2]. Such phenomena are typical for so-called relaxor ferroelectrics. The multiferroic nature of the SDW ground state suggests that the magnetic and dielectric properties are mutually dependent [3].

Our measurements of the low frequency dielectric response of two SDW systems, (TMTSF)₂AsF₆ and (TMTSF)₂PF₆, in magnetic field demonstrate strong coupling of the magnetic and charge degrees of freedom. Increasing the field up to 8 T in the direction of the SDW hard axis increases the dielectric constant and the relaxation time up to one order of magnitude, particularly in the vicinity of the glass transition temperature near 2 K.

This magnetocapacitive effect is more pronounced that the well-known magnetoresistive effect [4] observed in the same samples. Therefore it cannot be explained by the change of the free carrier screening only and the direct influence of the magnetic field on the SDW state has to be considered, either through the softening of SDW or through the decrease of the pinning.

*This work was supported by Croatian MSES project 035-0352827-2842 and by DFG via SFB 484