Upper critical field of layered organic superconductor, (TMTSF)$_2$ClO$_4$

Hidetaka Satsukawa1, Motoi Kimata1, Atsushi Harada1, Taichi Terashima1, Shinya Uji1,2
and Jun-ichi Yamada3

1National Institute for Materials Science, Japan.
2Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan
3University of Hyogo, Japan
Email: SATSUKAWA.Hidetaka@nims.go.jp

One of the Bechgaard salts, (TMTSF)$_2$ClO$_4$ exhibits superconducting transition at about 1.4 K. When the magnetic field is applied parallel to the conducting ab plane, it is reported that the upper critical field (H_{C2}) amounts to about 5 T at low temperatures, which is much higher than Pauli limit field ($H_{Pauli} \approx 2.6$ T) [1-3]. So far, T_C and H_{C2} have been mainly determined by resistance measurements. In low dimensional systems, it is well-known that resistance decrease due to large superconducting fluctuations might cause over-estimation of T_C and H_{C2}. Therefore, thermodynamic measurements are required to determine the superconducting phase diagram unambiguously.

To re-examine H_{C2} of (TMTSF)$_2$ClO$_4$, we have performed systematic measurements of the field-angle-dependence of magnetic torque and interlayer resistance (R_{ZZ}) for a same single crystal. The magnetic torque curves (Fig. 1) show characteristic angular dependence at field angles close to 90 degrees (H//plane). Distinct steep linear slope at 90 degrees is caused by Meissner or pinning effect of vortices along the perpendicular to the superconducting ab plane. The sudden changes to the background are interpreted as lock-in transitions of the vortices.

These behaviors are suppressed as the field increases, and is not appreciable above H_{Pauli}. The resistance R_{ZZ} is zero within the experimental error below H_{Pauli} but shows finite values above H_{Pauli}. These results clearly show that H_{C2} does not exceed H_{Pauli}. We will show the phase diagram determined from these measurements and discuss the superconducting fluctuation effect on these quantities.

Fig. 1: Angular dependence of magnetic torque at about 0.2 K