Anisotropic Pressure Effects on the Charge Order Transition of (TMTTF)$_2$X

Mitsuharu Nagasawa1,2, Tokiko Nagasawa2, Koichi Ichimura3 and Kazushige Nomura4

1 Department of Physics, Tokyo Denki University, Japan
2 Department of Green and Sustainable Chemistry, Tokyo Denki University, Japan
3 Division of Applied Physics, Hokkaido University, Japan
4 Division of Physics, Hokkaido University, Japan
Email: nagasawa@mail.dendai.ac.jp

We measured the temperature dependent conductivity along the a-axis of quasi one-dimensional organic conductor (TMTTF)$_2$SbF$_6$ under several hydrostatic and the b-direction anisotropic pressures by using a constant high-pressure apparatus [1]. The anisotropic pressure was generated below 190K by so-called “frozen oil method” [2]. It was found that the charge order (CO) transition temperature T_{CO} strongly depends on hydrostatic pressure, however, it is almost constant for uniaxial pressure along the b-direction. We will discuss the both pressure effects on the CO in (TMTTF)$_2$SbF$_6$.

![Phase diagram of (TMTTF)$_2$SbF$_6$](image)

Fig.1 Phase diagram of (TMTTF)$_2$SbF$_6$; squares: static pressure, circles: uniaxial pressure.