Interlayer Charge Disproportionation of the Weakly Incoherent Layered Organic Superconductor

\(\kappa_{\text{H}}\text{-}(\text{DMEDO-TSeF})_2\text{[Au(CN)₄]}(\text{THF}) \)

Tadashi Kawamoto¹, Takehiko Mori¹, David Graf², James S. Brooks², Yamaguchi Takahide³, Shinya Uji³, Takashi Shirahata¹, and Tatsuro Imakubo⁴

¹Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Japan
²National High Magnetic Field Laboratory and Department of Physics, Florida State University, USA
³National Institute for Materials Science, Japan
⁴Imakubo Initiative Research Unit, RIKEN, Japan

Email: kawamoto@o.cc.titech.ac.jp

Organic superconductors \(\kappa_{\text{L}} \) and \(\kappa_{\text{H}}\text{-}(\text{DMEDO-TSeF})_2\text{[Au(CN)₄]}(\text{THF}) \) have the same chemical composition [1]. Although the \(\kappa_{\text{L}} \) phase has disordered THF molecules and shows a structural phase transition at \(T_d = 209 \text{ K} \) [2], THF of the \(\kappa_{\text{H}} \) phase is ordered even at room temperature. The \(\kappa_{\text{H}} \) phase has two crystallographically independent \(\kappa \)-type conducting layers. The background shape of the angular-dependent magnetoresistance of the \(\kappa_{\text{H}} \) phase depends on the magnetic field strength (Fig. 1). The resistance peak under the magnetic field nearly parallel to the conducting layer is scaled by \(B \cos(\theta) \). This indicates that the resistance peak is not a coherence peak but a weak localization effect, and the present compound is a weakly incoherent layered system [3]. However, the Shubnikov-de Haas oscillations show two closed orbits with nearly 100% of the first Brillouin zone (Fig. 2). This indicates that the band filling of the crystallographically independent layer differs. The characteristic arrangement of the polar THF molecule in the insulating layers is the origin of the interlayer charge disproportionation.