Antiferromagnetic Fluctuation in Organic Superconductor, $\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$, under Pressure

Megumi Itaya, Yoshihiro Eto and Atsushi Kawamoto, Hiromi Taniguchi

Department of Quantum and Condensed Matter Physics, Graduate School of Science, Hokkaido University. Kita-ku, Sapporo, Hokkaido 060-0810, Japan

Department of Physics, Faculty of Science, Saitama University, Shimo-Ohkubo 255 Saitama, Saitama 338-8570, Japan

Email: itaya@ltphys.sci.hokudai.ac.jp

Quasi-two-dimensional organic superconductor, $\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$ is thought to show the relationship between superconductivity and anti-ferromagnetism. Organic superconductors are sensitive to pressures. However, there are few systematic studies to show the dependence of physical pressure about this material. Physical pressure has the advantage of being quantitative. The application of pressure in this material has been shown to steeply decrease $T_c$ with the superconductivity suppressed above 0.6 GPa.

Shubnikov-de Haas (SdH) effect under pressures suggests the relationship between $T_c$ and the effective cyclotron mass [1,2]. This result suggests the electron correlation contributes to the superconductivity. However the detail of the correlation is not so clear. NMR is a powerful tool, which can probe the magnetic fluctuation and the local density of state. We measured the $^{13}$C-NMR spectrum and $T_1$ of the $\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$ under pressures. Both of Knight shift and $1/T_1T$ show the temperature independent behavior at low temperature under all pressure, suggesting that $\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$ behaves as a Fermi liquid at low temperature under all pressures. Pressure dependence of Knight shift at low temperature, which corresponds to the local density of state, cannot examined the strong pressure dependence of the effective cyclotron mass. On the other hand, pressure dependence of Korringa factor, calculated from Knight shift and $1/T_1T$, is similar to that of the effective cyclotron mass. These results suggest that anti-ferromagnetic fluctuations contribute to the superconductivity in this material.