First-Principles Study of Spontaneous Polarization in Tetrathiafulvalene-p-Chloranil (TTF-CA)

Shoji Ishibashi1, and Kiyoyuki Terakura2

1Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Japan
2Research Center for Integrated Science (RCIS), Japan Advanced Institute of Science and Technology (JAIST), Japan
Email: shoji.ishibashi@aist.go.jp

The organic compound tetrathiafulvalene-p-chloranil (TTF-CA; TTF = C\textsubscript{6}H\textsubscript{4}S\textsubscript{4}, CA = C\textsubscript{6}Cl\textsubscript{4}O\textsubscript{2}) has been attracting much attention because of its peculiar phase transition and related phenomena. TTF-CA belongs to a class of materials called mixed-stack compounds. They fall into two types depending on the balance between the ionization cost and the electrostatic energy. One is a neutral donor-acceptor complex whose constituent molecules are nominally neutral. The other is an ionic salt composed of donors and acceptors. Several mixed-stack compounds are located near the neutral-ionic phase boundary and undergo a phase transition by applying pressure or decreasing temperature. TTF-CA is a typical example. At room temperature and ambient pressure, TTF-CA is in the neutral (N) phase. The system becomes the ionic (I) phase above \sim 11 kbar at 300 K or below \sim 84 K at ambient pressure. In the I phase, donor-acceptor dimers with weak bond are formed along the stacking direction \(a\) and the inversion symmetry is lost for the crystal and for each molecule. As a result, the I phase is ferroelectric while the N phase is paraelectric.

In the present work, we have evaluated spontaneous polarization of TTF-CA by first-principles calculations using our in-house computational code QMAS (Quantum MAterials Simulator), which is based on the projector augmented-wave (PAW) method with the planewave basis set. Calculations were made not only on the experimental structure \cite{1} but also on computationally optimized ones. The obtained electronic band structures are in good agreement with those reported by Oison \textit{et al.} \cite{2}. The spontaneous polarization for the experimental structure is estimated to be 0.10 C/m\(^2\), which is significantly larger than the experimental value of 0.4 x 10\(^{-2}\) C/m\(^2\) reported by Collet \cite{3}. We discuss the origin of the large spontaneous polarization from the present calculation as well as possible sources for the discrepancy between the calculation and the experiment.

* This research was partially supported by Grant-in-Aid for Scientific Research on Innovative Areas 20110003 from the Ministry of Education, Science, Sports and Culture.

\begin{thebibliography}{9}
\bibitem{3} E. Collet, Ph.D thesis, University of Rennes 1, (1999).
\end{thebibliography}