Competition of Two Charge Ordering Domains in \(\theta-(\text{BEDT-TTF})_2\text{RbZn(SCN)}_4 \)

Y. Nogami1,2, N. Hanasaki1, N. Ikeda1, T. Kambe1, M. Watanabe3, Y. Noda3, K. Yamamoto4, H. Toyokawa4, H. Ohsumi2,4, I. Terasaki5, H. Mori6, and T. Mori7

1Department of Physics, Okayama University, Japan
2CREST-JST, Japan
3Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan
4SPring-8, Japan
5Department of Applied Physics, Waseda University, Japan
6ISSP, University of Tokyo, Japan
7Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Japan.

Email: nogami@science.okayama-u.ac.jp

In the organic 2D system, the charge frustration and the charge ordering (CO) in quasi-triangular lattice are important problems. Concerning these problems, \(\theta-(\text{BEDT-TTF})_2\text{Cs(Zn or Co)(SCN)}_4 \) is focused materials owing to their giant non-linear conductivity\cite{1} and melting of two-fold horizontal CO\((q_2)\) only by current\cite{2}; there are two CO’s in these materials. These behaviors are not due to simple self-heating by Joule effect but to inherent current effect\cite{3}. To deepen our understanding, we are looking for another material exhibiting similar interesting behavior induced by current.

Recently we noticed to be able to freeze \(3 \times 4 \) short ranged CO\((q_1') \), and realize lower resistive state by suppressing \(q_2 \) CO in \(\theta-(\text{BEDT-TTF})_2\text{RbZn(SCN)}_4 \) with ultra rapid cooling. Around 140 K a monotonic decrease in diffuse scattering intensity of the \(q_1' \) modulation and a monotonic increase in the \(q_2 \) intensity was observed with a passage of time. Furthermore the resistivity corresponds well to the size of the \(q_2 \) domain. These results show the \(q_1' \) domain is metallic (or lower resistive) and the \(q_2 \) domain is insulating. The competing CO’s clearly observed in the title material will be a key to understand the non-linear electronic property in these compounds at low temperatures.

*This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas of Novel Functions of Molecular Conductors under Extreme Conditions from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We acknowledge use of SR from SPring-8 BL02B1 in the long term proposal.

2F. Sawano \textit{et al.}, Nature 437(2005)522.
3T. Ito \textit{et al.}, EPL 84(2008)26002.