Muon Studies of a Molecular 2D Spin-Liquid

Francis Pratt¹, Peter Baker¹, Tom Lancaster², Stephen Blundell², Seiko Ohira-Kawamura³, Yasuhiro Shimizu⁴ and Kazushi Kanoda⁵

¹ISIS Facility, Rutherford Appleton Laboratory, UK
²Clarendon Laboratory, University of Oxford, UK
³J-PARC, JAEA, Tokai, Japan
⁴Institute for Advanced Research, Nagoya University, Japan
⁵Department of Applied Physics, University of Tokyo, Japan
Email: francis.pratt@stfc.ac.uk

Muon spin relaxation has been used to study the 2D triangular lattice molecular system \(\kappa\text{-}\text{ET}_2\text{Cu}_2(\text{CN})_3 \), which has been the focus of much recent experimental and theoretical attention as one of the most convincing examples of a triangular lattice spin-liquid [1]. Previous zero field \(\mu \text{SR} \) studies have confirmed that no magnetic ordering takes place down to 20 mK in this system [1], despite an estimated exchange coupling of 250 K [2].

The present studies have been made over a wide range of applied fields, ranging from zero field to 3 T and for temperatures ranging between 120 mK and 80 K. The high field measurements provide good overlap with the regime studied previously with NMR and show a field-induced inhomogeneous broadening at low temperatures that is linear in field and consistent with that seen previously in NMR [3]. Both NMR and \(\mu \text{SR} \) suggest that static moments are being induced in the spin-liquid phase by strong applied fields. One particular advantage of the \(\mu \text{SR} \) technique is that measurements can be extended to very low fields, where there is less likely to be a significant perturbation of the system by the probe field. Detailed measurements were therefore made in the region below 20 mT, where no significant induced static moments are seen. A field-dependent electronic relaxation is observed here, that may be assigned to spinon-type fluctuations of the the spin-liquid ground state. The fluctuations are analysed in terms of a diffusion model representing Brownian motion of the spin excitations on a 2D lattice, which shows a specific logarithmic dependence on field. The temperature dependence of the diffusion rate obtained from this analysis follows a weak power law, whose power is a little lower than that seen with NMR over the same temperature range [3]. These results are discussed in terms of recent theoretical models for the spin-liquid state in this system.