Exploring Lattice Effects at the Charge Ordering Transition in (TMTTF)$_2$X

Mariano de Souza1, Pascale Foury-Leylekian2, Alec Moradpour2, Jean-Paul Pouget2, and Michael Lang1

1Physikalisches Institut, Goethe-Universität Frankfurt, SFB/TR 49 Germany
2Laboratoire de Physique des Solides, Université Paris Sud, France

Email: mariano@physik.uni-frankfurt.de

The experimental observation of a charge-ordering (CO) transition [1] coinciding with the onset of ferroelectricity [2] in the quasi-1D conductors of the (TMTTF)$_2$X family revealed the exceptional properties of the Mott-Hubbard insulating phase in these materials. Recently we reported on the role of lattice degrees of freedom in stabilizing the charge-ordered phase in the X = PF$_6$ and AsF$_6$ salts [3]. Our results in [3] suggest that above the CO transition temperature T_{CO}, CO fluctuations, evident from the dielectric measurements [2] to persist up to high temperatures, cause, via S-F contacts, positional fluctuations of the anions towards their new off-center equilibrium positions. These positional fluctuations provide an effective damping of the anions’ rigid-unit modes which were made responsible for the negative thermal expansion contribution at high temperatures [3]. Upon cooling through T_{CO}, however, the CO becomes static, giving rise to a freezing of these modes and, as a consequence, the negative contribution in α_{c^*} (see figure) is no longer active. Here we review our results of high-resolution thermal expansion measurements at the CO transition on various members of the title substances including the anions X = SbF$_6$ and Br. For the X = SbF$_6$ salt, a large λ-type anomaly occurs at $T_{co} = T_P$ (the position of the resistivity minimum), which contrasts with the step-like anomaly at T_{co} for PF$_6$ and AsF$_6$. The difference can be understood as a consequence of short-range Coulomb forces in the SbF$_6$ salt, where CO coincides with a metal-insulator (MI) transition, as compared to long-range forces in the AsF$_6$ and PF$_6$ salts where $T_{CO} < T_P$. For the X = Br salt, the negative contribution in α_{c^*} is absent, consistent with the model proposed in [3].